> Algorithm Analysis & Design — Quick
Revision Sheet

Lecture 1 — Introduction to Algorithms

Algorithm:
A well-defined sequence of steps that transforms input — output.

Properties of an Algorithm:

e Input (from a defined set)

e Output (clearly specified result)
e Definiteness (each step clear)

e Correctness (gives right results)
e Finiteness (must end)

e Effectiveness (each step doable)

e Generality (works for similar problems)

Basic Commands:

Command Syntax Meaning

Assignmen X = 5Y + Stores valuein

t 16 memory
Input Get X Take value from user
Output Give X Display value

Note:

Assignment (A = A + 3) # Mathematical equality — in CS, it updates the variable’s value.

Algorithm Structure

1. Understand problem

2. ldentify Givens (inputs)
3. Identify Results (outputs)
4. Name the algorithm

5. Write method using Get, int, Give

Example — Sum of Three Numbers

Get N1

Get N2

Get N3

int Total = N1 + N2 + N3
Give Total

Tracing an Algorithm
Used to verify correctness.

1. Number each line.
2. Make a table for variables.
3. Execute step-by-step.

4. Update values and check outputs.

Flowchart Symbols
Shape Meaning

Oval Start / End

Rectangle Process
Parallelogram Input / Output
Diamond Decision

Arrows Flow of control

Lecture 2 — Complexity of Algorithms

Why analyze algorithms?
When multiple algorithms solve the same problem, choose based on:

1. Ease of implementation
2. Running time

3. Memory usage

We focus on time and space complexity.

Linear Search Example
Find if 3 existsinlist A[1...n].

fori=1ton
if A[i] == 3 — found

Observation:

e Time depends on list size (n)

e Position of element affects runtime

Cases:

Case Meaning Example

Best Fewest steps Found first
Worst Most steps Not found

Averag Middle number Random position
e

Complexity Terms

e Time Complexity: number of steps to complete

e Space Complexity: memory required

Asymptotic Notation

Used to describe growth rate of running time.

Notation Meaning Example
O (Big Oh) Upper bound — Worst case O(n?)
Q (Big Omega) Lower bound — Best case Q(n)

O (Big Theta) Tight bound — Average O(n log n)
case

Think:

O = “At most this slow”
Q = “At least this fast”

© = “Typical growth rate”

Lecture 3 — Counting Operations

To analyze runtime, count primitive operations:

e Assignments

e Arithmetic (+, -, *, /)
e Comparisons (<, >)
e Function calls

e Loop iterations

Example 1 — Sum of n elements

s=0;

for (i=0;i<n;i++){
s =s + A[i];

}

return s;

Total Operations: ~2n + 2
— O(n)

Example 2 — Add Two nxn Matrices

fori=0ton-1
forj=0 to n-1
C[i.j] = Ali.j] + B[i,jl;

Total: n?
— O(n?)

Example 3 — Multiply Two nxn Matrices

fori=0ton-1
forj=0 to n-1
for k = 0 to n-1
CI[i,j] += Ali,k] * B[K,j];

Total: n3
— O(n3)

Loop Patterns

Code Iterations Complexity
for(i=0; i<n; n O(n)
i++)
for(i=1; i<n; n/2 O(n)
i+=2)
Nested Loops nxn O(n?)
Triple Nested nxnxn O(n%

Quick Review

Algorithm Example Complexity
Linear Search Check every element O(n)
Binary Search Divide by 2 each time O(log n)
Bubble Sort Nested loops O(n?)
Matrix Addition Double loop O(n?)
Matrix Multiplication Triple loop O(n3)

¢y 1-Day Crash Study Plan

1. Read this summary slowly (=40 min).
2. Trace one algorithm manually.

3. Memorize O, Q, © notation meanings.
4. Understand why nested loops — O(n?).

5. Skim this again before bed.

Bonus: Big-O Growth (small — large)

O(1) < O(log n) < O(n) < O(n log n) < O(n2) < O(n%) < O(2")

Tip: Always look for patterns in loops — they reveal the time complexity faster than counting
steps.

	🧠 Algorithm Analysis & Design — Quick Revision Sheet
	Lecture 1 — Introduction to Algorithms
	Algorithm Structure
	Tracing an Algorithm
	Flowchart Symbols

	Lecture 2 — Complexity of Algorithms
	Linear Search Example
	Complexity Terms
	Asymptotic Notation

	Lecture 3 — Counting Operations
	Example 1 — Sum of n elements
	Example 2 — Add Two n×n Matrices
	Example 3 — Multiply Two n×n Matrices
	Loop Patterns

	Quick Review

