
🧠 Algorithm Analysis & Design — Quick
Revision Sheet

Lecture 1 — Introduction to Algorithms
Algorithm:​
 A well-defined sequence of steps that transforms input → output.

Properties of an Algorithm:

●​ Input (from a defined set)​

●​ Output (clearly specified result)​

●​ Definiteness (each step clear)​

●​ Correctness (gives right results)​

●​ Finiteness (must end)​

●​ Effectiveness (each step doable)​

●​ Generality (works for similar problems)​

Basic Commands:

Command Syntax Meaning

Assignmen
t

X = 5Y +
16

Stores value in
memory

Input Get X Take value from user

Output Give X Display value

Note:​
 Assignment (A = A + 3) ≠ Mathematical equality — in CS, it updates the variable’s value.

Algorithm Structure

1.​ Understand problem​

2.​ Identify Givens (inputs)​

3.​ Identify Results (outputs)​

4.​ Name the algorithm​

5.​ Write method using Get, int, Give​

Example – Sum of Three Numbers

Get N1
Get N2
Get N3
int Total = N1 + N2 + N3
Give Total

Tracing an Algorithm

Used to verify correctness.

1.​ Number each line.​

2.​ Make a table for variables.​

3.​ Execute step-by-step.​

4.​ Update values and check outputs.​

Flowchart Symbols

Shape Meaning

Oval Start / End

Rectangle Process

Parallelogram Input / Output

Diamond Decision

Arrows Flow of control

Lecture 2 — Complexity of Algorithms
Why analyze algorithms?​
 When multiple algorithms solve the same problem, choose based on:

1.​ Ease of implementation​

2.​ Running time​

3.​ Memory usage​

We focus on time and space complexity.

Linear Search Example

Find if 3 exists in list A[1...n].

for i = 1 to n
 if A[i] == 3 → found

Observation:

●​ Time depends on list size (n)​

●​ Position of element affects runtime​

Cases:

Case Meaning Example

Best Fewest steps Found first

Worst Most steps Not found

Averag
e

Middle number Random position

Complexity Terms

●​ Time Complexity: number of steps to complete​

●​ Space Complexity: memory required​

Asymptotic Notation

Used to describe growth rate of running time.

Notation Meaning Example

O (Big Oh) Upper bound → Worst case O(n²)

Ω (Big Omega) Lower bound → Best case Ω(n)

Θ (Big Theta) Tight bound → Average
case

Θ(n log n)

Think:​
 O = “At most this slow”​
 Ω = “At least this fast”​
 Θ = “Typical growth rate”

Lecture 3 — Counting Operations
To analyze runtime, count primitive operations:

●​ Assignments​

●​ Arithmetic (+, −, *, /)​

●​ Comparisons (<, >)​

●​ Function calls​

●​ Loop iterations​

Example 1 — Sum of n elements
s = 0;
for (i = 0; i < n; i++) {
 s = s + A[i];
}
return s;

Total Operations: ~2n + 2​
 → O(n)

Example 2 — Add Two n×n Matrices
for i = 0 to n-1
 for j = 0 to n-1
 C[i,j] = A[i,j] + B[i,j];

Total: n²​
 → O(n²)

Example 3 — Multiply Two n×n Matrices
for i = 0 to n-1
 for j = 0 to n-1
 for k = 0 to n-1
 C[i,j] += A[i,k] * B[k,j];

Total: n³​
 → O(n³)

Loop Patterns

Code Iterations Complexity

for(i=0; i<n;
i++)

n O(n)

for(i=1; i<n;
i+=2)

n/2 O(n)

Nested Loops n × n O(n²)

Triple Nested n × n × n O(n³)

Quick Review
Algorithm Example Complexity

Linear Search Check every element O(n)

Binary Search Divide by 2 each time O(log n)

Bubble Sort Nested loops O(n²)

Matrix Addition Double loop O(n²)

Matrix Multiplication Triple loop O(n³)

🔥 1-Day Crash Study Plan
1.​ Read this summary slowly (≈40 min).​

2.​ Trace one algorithm manually.​

3.​ Memorize O, Ω, Θ notation meanings.​

4.​ Understand why nested loops → O(n²).​

5.​ Skim this again before bed.​

⚡ Bonus: Big-O Growth (small → large)

O(1) < O(log n) < O(n) < O(n log n) < O(n²) < O(n³) < O(2ⁿ)

Tip: Always look for patterns in loops — they reveal the time complexity faster than counting
steps.

	🧠 Algorithm Analysis & Design — Quick Revision Sheet
	Lecture 1 — Introduction to Algorithms
	Algorithm Structure
	Tracing an Algorithm
	Flowchart Symbols

	Lecture 2 — Complexity of Algorithms
	Linear Search Example
	Complexity Terms
	Asymptotic Notation

	Lecture 3 — Counting Operations
	Example 1 — Sum of n elements
	Example 2 — Add Two n×n Matrices
	Example 3 — Multiply Two n×n Matrices
	Loop Patterns

	Quick Review

